An expansion based on Sine-Gordon equation to Solve KdV and modified KdV equations in conformable fractional forms
نویسندگان
چکیده
An expansion method based on time fractional Sine-Gordon equation is implemented to construct some real and complex valued exact solutions the Korteweg-de Vries modified equations in forms. Compatible traveling wave transform plays a key role be able apply homogeneous balance technique set predicted solution. The relation between trigonometric hyperbolic functions allows form with multiplication of powers functions. Some forms are explicitly expressed by proposed for both equations.
منابع مشابه
Pfaffian Solutions for the Manin-Radul-Mathieu SUSY KdV and SUSY sine-Gordon Equations
We reduce the vectorial binary Darboux transformation for the Manin-Radul supersymmetric KdV system in such a way that it preserves the Manin-Radul-Mathieu supersymmetric KdV equation reduction. Expressions in terms of bosonic Pfaffians are provided for transformed solutions and wave functions. We also consider the implications of these results for the supersymmetric sine-Gordon equation. On le...
متن کاملApplying Multiquadric Quasi-Interpolation to Solve KdV Equation
Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations. Based on the good performance, Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation, which is generalized from the LD operator, and used it to solve hyperbolic conservation laws and Burgers’...
متن کاملSharp Global Well - Posedness for Kdv and Modified Kdv On
The initial value problems for the Korteweg-de Vries (KdV) and modified KdV (mKdV) equations under periodic and decaying boundary conditions are considered. These initial value problems are shown to be globally well-posed in all L 2-based Sobolev spaces H s where local well-posedness is presently known, apart from the H 1 4 (R) endpoint for mKdV. The result for KdV relies on a new method for co...
متن کاملAn Improved Local Wellposedness Result for the Modified Kdv-equation
The Cauchy problem for the modified KdV-equation ut + uxxx = (u 3)x, u(0) = u0 is shown to be locally wellposed for data u0 in the space Ĥr s (R) defined by the norm ‖u0‖ Ĥr s := ‖〈ξ〉sû0‖Lr′ ξ , provided 4 3 < r ≤ 2, s ≥ 1 2 − 1 2r . For r = 2 this coincides with the best possible result on the H-scale due to Kenig, Ponce and Vega. The proof uses an appropriate variant of the Fourier restrictio...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boletim da Sociedade Paranaense de Matemática
سال: 2022
ISSN: ['0037-8712', '2175-1188']
DOI: https://doi.org/10.5269/bspm.44592